Artificial Intelligence Optimization Algorithms in the Finance Sector

Yazarlar

  • Filiz MUTLU YILDIRIM Çanakkale Onsekiz Mart Üniversitesi
  • Burçin ONUR
  • Sıraç Ömer KUNDURACI

Anahtar Kelimeler:

Finance Sector- Artificial Intelligence- Optimization- Algorithm

Özet

Increasing efficiency and security expectations with the technological developments in the financial sector have necessitated more effective solutions in issues such as financial failure prediction, portfolio selection, market analysis, risk assessment, and stock price estimation. At this point, artificial intelligence optimization algorithms come to the fore in terms of lower cost, higher data storage capacity, and transaction volume, performing the same operations in similar problems and creating an effective order to prevent problems that may occur in the future. For this purpose, the use of artificial intelligence optimization algorithms in the finance sector is discussed in this study. To guide their use in decision-making and problem-solving processes, Artificial Bee Colony Algorithm, Tabu Search Algorithm, Flower Pollination Algorithm, Shark Smell Optimization Algorithm, and Differential Evolution Algorithm were explained and examples from their application areas were shared. As a result of the study, the advantages of artificial intelligence optimization algorithms were revealed and their importance in the finance sector was emphasized. This study is especially widely used in the solution of engineering problems; however, it contributes to the literature in terms of explaining algorithms whose applications in the finance sector are still limited.

Referanslar

Abedinia, O., Amjady, N., & Ghasemi, A. (2016). A new metaheuristic algorithm based on shark smell optimization. Complexity, 21(5), 97-116.

Akkaya, G. C., Demireli, E., Yakut, Ü. H., Demireli, E., & Yakut, H. (2009). İşletmelerde finansal başarısızlık tahminlemesi: Yapay sinir ağları modeli ile İMKB üzerine bir uygulama. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 10(2), 187-216.

Aktaş, R. (2003). Mali başarısızlığın öngörülmesi: İstatistiksel yöntemler ve yapay sinir ağı karşılaştırılması. Ankara Üniversitesi SBF Dergisi, 58(04).

Allawi, M. F., Jaafar, O., Mohamad Hamzah, F., Ehteram, M., Hossain, M. S., & El-Shafie, A. (2018). Operating a reservoir system based on the shark machine learning algorithm. Environmental Earth Sciences, 77, 1-14.

Altunöz, U. (2013). Bankaların finansal başarısızlıklarının yapay sinir ağları modeli çerçevesinde tahmin edilebilirliği. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 28(2), 189-217.

Archetti, C., Speranza, & M. G., Hertz, A. (2006). A tabu search algorithm for the split delivery vehicle routing problem. Transportation Science, 40(1), 64-73.

Arun, B., & Kumar, T. V. (2017). Materialized view selection using artificial bee colony optimization. International Journal of Intelligent Information Technologies (IJIIT), 13(1), 26-49.

Başkan, Ö., & Ceylan, H. (2014). Ulaşım ağ tasarımı problemlerinin çözümünde diferansiyel gelişim algoritması tabanlı çözüm yaklaşımları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 20(9), 324-331.

Buchanan, B. (2019). Artificial intelligence in finance. The Alan Turing Institute.

Chang, T. J., Yang, S. C., & Chang, K. J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems With Applications, 36(7), 10529-10537.

Cheeneebash, J., Lallmamode, K. B., & Gopaul, A. (2009). Predicting bankruptcy using tabu search in the mauritian context. World Academy of Science, Engineering and Technology, 58(4), 866-875.

Cuevas, F., Castillo, O., & Cortes, P. (2022). Optimal setting of membership functions for interval type-2 fuzzy tracking controllers using a shark smell metaheuristic algorithm. International Journal of Fuzzy Systems, 24(2), 799-822.

Çakıcı, Z., & Murat, Y. S. (2021). Sinyalize dönel kavşaklarda diferansiyel gelişim algoritması ile sinyal süre optimizasyonu. El-Cezeri, 8(2), 635-651.

Çavuş, V., & Tuncer, A. (2017). İnsansız Hava Araçları İçin Yapay Arı Kolonisi Algoritması Kullanarak. Karaelmas Fen ve Mühendislik Dergisi, 7(1), 259-265.

Çelik, M. K. (2010). Bankaların finansal başarısızlıklarının geleneksel ve yeni yöntemlerle öngörüsü. Yönetim ve Ekonomi Dergisi, 17(2), 129-143.

Denney, A. S., & Tewksbury, R. (2013). How to write a literature review. Journal of Criminal Justice Education, 24(2), 218-234.

Drake, A. E., & Marks, R. E. (1998). Genetic algorithms in economics and finance: Forecasting stock market prices and foreign exchange: a review. Australian Graduate School of Management, University of New South Wales.

Ehteram, M., El-Shafie, A. H., Hin, L. S., Othman, F., Koting, S., Karami, H., ... & El-Shafie, A. (2019). Toward bridging future irrigation deficits utilizing the shark algorithm integrated with a climate change model. Applied Sciences, 9(19), 3960.

Ehteram, M., Karami, H., Mousavi, S. F., El-Shafie, A., & Amini, Z. (2017). Optimizing dam and reservoirs operation based model utilizing shark algorithm approach. Knowledge-Based Systems, 122, 26-38.

Fallahpour, S., & Eram, A. (2016). Predicting Companies financial distress by using ant colony algorithm. Financial Research Journal, 18(2), 347-368.

Farrell, J., & Givargis, T. (2000). Differential GPS reference station algorithm-design and analysis. IEEE Transactions On Control Systems Technology, 8(3), 519-531.

Fernández, A. (2019). Artificial intelligence in financial services. Banco de Espana Article, 3, 19.

Fernández, A. (2019). Artificial intelligence in financial services. Banco de Espana Article, 3, 19.

Glover, F. (1989). Tabu Search—Part I. Orsa Journal on Computing, 1(3), 190-206.

Glover, F. (1990). Tabu Search—Part II. Orsa Journal on Computing, 2(1), 4-32.

Golić, Z. (2019). Finance and artificial intelligence: THE fifth industrial revolution and its impact on the financial Sector. Zbornik Radova Ekonomskog Fakulteta u Istocnom Sarajevu, (19), 67-81.

Gümüş, E., Medetoğlu, B., & Tutar, S. (2020). Finans ve bankacılık sisteminde yapay zekâ kullanımı: Kullanıcılar üzerine bir uygulama. Bucak İşletme Fakültesi Dergisi, 3(1), 28-53.

Gürarslan, G. (2011). Yeraltısuyu kirletici kaynak yerlerininin ve boşalım geçmişlerinin diferansiyel gelişim algoritması kullanılarak belirlenmesi (Doctoral Thesis). Pamukkale University Institute of Science and Technology

Gürbüz, Ö. (2015). Tabu arama algoritmasının kuyruk problemine uygulanması (Master's Thesis). Hacettepe University Department of Statistics

Hrstka, O., & Kučerová, A. (2004). Improvements of real coded genetic algorithms based on differential operators preventing premature convergence. Advances in Engineering Software, 35(3-4), 237-246.

Jiang, Y., Xu, L., Wang, H., & Wang, H. (2009). Influencing factors for predicting financial performance based on genetic algorithms. Systems Research and Behavioral Science: The Official Journal of the International Federation for Systems Research, 26(6), 661-673.

Kaleli, S. S. (2022). Getiri-risk oranına göre karınca koloni optimizasyonu tabanlı portföy seçimi: BIST-30 örneği. İşletme Araştırmaları Dergisi, 14(3), 1741-1752.

Karaboğa, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department.

Karaboğa, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214(1), 108-132.

Kartal, B. (2015). Yapay arı kolonisi algoritması ile finansal portföy optimizasyonu. (Unpublished Doctoral Thesis), Istanbul: Istanbul University Institute of Social Sciences.

Katiyar, S., Khan, R., & Kumar, S. (2021). Artificial bee colony algorithm for fresh food distribution without quality loss by delivery route optimization. Journal of Food Quality, 2021.

Kaya Keles, M., Kilic, U., & Keles, A. E. (2021). Proposed artificial bee colony algorithm as feature selector to predict the leadership perception of site managers. The Computer Journal, 64(3), 408-417.

Kingdon, J., & Feldman, K. (1995). Genetic algorithms and applications to finance. Applied Mathematical Finance, 2(2), 89-116.

Korkmaz, E., & Akgüngör, A. P. (2

. Türkiye'deki araç sahipliğinin çiçek tozlaşma algoritması ile tahmini. Gazi Mühendislik Bilimleri Dergisi, 4(1), 39-45.

Kulak, O. Şahin, Y. Taner, M.E. (2010) “Depo operasyonlarının kümelendirme esaslı tabu arama algoritması ile yönetilmesi”, 10. National Production Research Symposium, 16-18 September, Girne American University, Kyrenia, Cyprus.

Lin, C. C., & Liu, Y. T. (2008). Genetic algorithms for portfolio selection problems with minimum transaction lots. European Journal of Operational Research, 185(1), 393-404.

Lin, T. C. (2019). Artificial intelligence, finance, and the law. Fordham L. Rev., 88, 531.

Lui, A., & Lamb, G. W. (2018). Artificial intelligence and augmented intelligence collaboration: regaining trust and confidence in the financial sector. Information & Communications Technology Law, 27(3), 267-283.

Lukasik, S., & Kowalski, P. A. (2015). Study of flower pollination algorithm for continuous optimization. In Intelligent Systems' 2014 (pp. 451-459). Springer, Cham.

Malali, A. B., & Gopalakrishnan, S. (2020). Application of artificial intelligence and its powered technologies in the Indian banking and financial industry: An overview. IOSR Journal Of Humanities And Social Science, 25(4), 55-60.

Mayer, D. G., Kinghorn, B. P., & Archer, A. A. (2005). Differential evolution–an easy and efficient evolutionary algorithm for model optimisation. Agricultural Systems, 83(3), 315-328.

Milana, C., & Ashta, A. (2021). Artificial intelligence techniques in finance and financial markets: a survey of the literature. Strategic Change, 30(3), 189-209.

Moșteanu, N. R. (2019). International financial m

arkets face to face with artificial intelligence and digital era. Theoretical & Applied Economics, 26(3), 123-134.

Mustaffa, Z., & Yusof, Y. (2012). A hybridization of enhanced artificial bee colony-least squares support vector machines for price forecasting. Journal of Computer Science, 8(10), 1680-169

Niğdeli, S. M., Bekdaş, G., & Yang, X. S. (2016). Application of the flower pollination algorithm in structural engineering. In Metaheuristics and Optimization in Civil Engineering, 25-42. Springer, Cham.

Price, K. V. (1996, June). Differential evolution: a fast and simple numerical optimizer. In Proceedings of North American Fuzzy Information Processing, 524-527. IEEE.

Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: a practical approach to global optimization. Springer Science & Business Media.

Söylemez, Y., & Türkmen, S. Y. (2017). Yapay sinir ağları modeli ile finansal başarısızlık tahmini. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 2(4), 270-284

Storn, R. (2008). Differential evolution research–trends and open questions. Advances in Differential Evolution, 1-31.

Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341.

Tang, L., Zhao, Y., & Liu, J. (2013). An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation, 18(2), 209-225.

Tereshko, V. (2000). Reaction-diffusion model of a honeybee colony’s foraging behaviour. In Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6 (pp. 807-816). Springer Berlin Heidelberg.

Tereshko, V., & Lee, T. (2002). How information-mapping patterns determine foraging behaviour of a honey bee colony. Open Systems & Information Dynamics, 9(2), 181-193.

Terzi, Ü. (2009). Gezgin satıcı problemi için diferansiyel gelişim algoritması tabanlı bir metasezgisel önerisi (Doctoral Thesis). Kocaeli University Institute of Science and Technology.

Tsai, J. T., Fang, J. C., & Chou, J. H. (2013). Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm. Computers & Operations Research, 40(12), 3045-3055.

Uthayakumar, J., Metawa, N., Shankar, K., & Lakshmanaprabu, S. K. (2020). Financial crisis prediction model using ant colony optimization. International Journal of Information Management, 50, 538-556.

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26(2), xiii-xxiii.

Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and Natural Computation, 240-249. Springer, Berlin, Heidelberg.

Yang, X. S., Karamanoglu, M., & He, X. (2014). Flower pollination algorithm: A novel approach for multiobjective optimization. Engineering Optimization, 46(9), 1222-1237.

İndir

Yayınlanmış

25-03-2023